A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance.
نویسندگان
چکیده
PURPOSE Although most patients with estrogen receptor α (ER)-positive breast cancer initially respond to endocrine therapy, many ultimately develop resistance to antiestrogens. However, mechanisms of antiestrogen resistance and biomarkers predictive of such resistance are underdeveloped. EXPERIMENTAL DESIGN We adapted four ER(+) human breast cancer cell lines to grow in an estrogen-depleted medium. A gene signature of estrogen independence was developed by comparing expression profiles of long-term estrogen-deprived (LTED) cells to their parental counterparts. We evaluated the ability of the LTED signature to predict tumor response to neoadjuvant therapy with an aromatase inhibitor and disease outcome following adjuvant tamoxifen. We utilized Gene Set Analysis (GSA) of LTED cell gene expression profiles and a loss-of-function approach to identify pathways causally associated with resistance to endocrine therapy. RESULTS The LTED gene expression signature was predictive of high tumor cell proliferation following neoadjuvant therapy with anastrozole and letrozole, each in different patient cohorts. This signature was also predictive of poor recurrence-free survival in two studies of patients treated with adjuvant tamoxifen. Bioinformatic interrogation of expression profiles in LTED cells revealed a signature of MYC activation. The MYC activation signature and high MYC protein levels were both predictive of poor outcome following tamoxifen therapy. Finally, knockdown of MYC inhibited LTED cell growth. CONCLUSIONS A gene expression signature derived from ER(+) breast cancer cells with acquired hormone independence predicted tumor response to aromatase inhibitors and associated with clinical markers of resistance to tamoxifen. Activation of the MYC pathway was associated with this resistance.
منابع مشابه
ELF5 Suppresses Estrogen Sensitivity and Underpins the Acquisition of Antiestrogen Resistance in Luminal Breast Cancer
We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive...
متن کاملGlutamine metabolism and the unfolded protein response in MYC-driven breast cancer
Antiestrogens are used to treat estrogen receptor positive (ER+) breast tumors that constitute 70% of all breast cancer cases. Unfortunately, acquired resistance to antiestrogen therapy remains a critical clinical obstacle. Here we show that human breast cancer cells and rat mammary tumors that have acquired resistance to antiestrogens express increased levels of MYC, a major regulator of both ...
متن کاملWilms’ Tumor 1 Suppressor Gene Mediates Antiestrogen Resistance via Down-Regulation of Estrogen Receptor-A Expression in Breast Cancer Cells
The antiestrogen tamoxifen has been used in the treatment of hormone-responsive breast cancer for over a decade. The loss of estrogen receptor (ER) expression is the most common mechanism for de novo antiestrogen resistance. Wilms’ tumor 1 suppressor gene (WT1) is a clinically useful marker that is associated with poor prognosis in breast cancer patients; its high level expression is frequently...
متن کاملWilms' tumor 1 suppressor gene mediates antiestrogen resistance via down-regulation of estrogen receptor-alpha expression in breast cancer cells.
The antiestrogen tamoxifen has been used in the treatment of hormone-responsive breast cancer for over a decade. The loss of estrogen receptor (ER) expression is the most common mechanism for de novo antiestrogen resistance. Wilms' tumor 1 suppressor gene (WT1) is a clinically useful marker that is associated with poor prognosis in breast cancer patients; its high level expression is frequently...
متن کاملEstrogen receptor regulates E2F1 expression to mediate tamoxifen resistance.
Antiestrogen resistance often develops with prolonged exposure to hormone therapies, including tamoxifen, and is a major problem in the treatment of breast cancer. Understanding the mechanisms involved in the development of antiestrogen resistance is an important step in the development of new targeted therapies. Two forms of antiestrogen resistance exist: de novo resistance and acquired resist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2011